Cylinder Barrel Dimensional Inspection and Cylinder Assembly Reconditioning

Cylinder Barrel Dimensional Inspection


Inspect the cylinder barrel for wear, using a cylinder bore gauge [Figure 1], a telescopic gauge, and micrometer or an inside micrometer. Dimensional inspection of the barrel consists of the following measurements:

  1. Maximum taper of cylinder walls
  2. Maximum out-of-roundness
  3. Bore diameter
  4. Step
  5. Fit between piston skirt and cylinder

Cylinder Barrel Dimensional Inspection
Figure 1. A cylinder bore gauge

All measurements involving cylinder barrel diameters must be taken at a minimum of two positions 90° apart in the particular plane being measured. It may be necessary to take more than two measurements to determine the maximum wear. Taper of the cylinder walls is the difference between the diameter of the cylinder barrel at the bottom and the diameter at the top. The cylinder is usually worn larger at the top than at the bottom. This taper is caused by the natural wear pattern. At the top of the stroke, the piston is subjected to greater heat and pressure and more erosive environment than at the bottom of the stroke. Also, there is greater freedom of movement at the top of the stroke. Under these conditions, the piston wears the cylinder wall more at the top of the cylinder. In most cases, the taper ends with a ridge, that must be removed during overhaul. [Figure 2]

Figure 2. Ridge or step formed in an engine cylinder

Where cylinders are built with an intentional choke, measurement of taper becomes more complicated. Cylinder choke is where the top of the cylinder has been made with the very top diameter of the cylinder smaller, to compensate for wear and expansion during operation. It is necessary to know exactly how the size indicates wear or taper. Taper can be measured in any cylinder by a cylinder dial gauge as long as there is not a sharp step. The dial gauge tends to ride up on the step and causes inaccurate readings at the top of the cylinder.

The measurement for out-of-roundness is usually taken at the top of the cylinder. However, a reading should also be taken at the skirt of the cylinder to detect dents or bends caused by careless handling. A step, or ridge, is formed in the cylinder by the wearing action of the piston rings. [Figure 2] The greatest wear is at the top of the ring travel limit. The ridge that results is likely to cause damage to the rings or piston. If the step exceeds tolerances, it should be removed by grinding the cylinder oversize, or it should be blended by hand-stoning to break the sharp edge. A step also may be found where the bottom ring reaches the lowest travel. This step is rarely found to be excessive, but it should be checked. Check the cylinder flange for warpage by placing the cylinder on a suitable jig. Check to see that the flange contacts the jig all the way around. The amount of warpage can be checked by using a thickness gauge. [Figure 3] A cylinder whose flange is warped beyond the limits should be rejected.

reciprocating engine cylinder inspection
Figure 3. A method for checking cylinder flange warpage

Cylinder Assembly Reconditioning


Cylinder and piston assemblies are inspected according to the procedures contained in the engine manufacturer’s manuals, charts, and service bulletins. A general procedure for inspecting and reconditioning cylinders is discussed in the following section to provide an understanding of the operations involved.


Visually inspect the head fins for other damage besides cracks. Dents or bends in the fins should be left alone unless there is danger of cracking. Where pieces of fin are missing, the sharp edges should be filed to a smooth contour. Fin breakage in a concentrated area causes dangerous local hot spots. Fin breakage near the spark plug bushings or on the exhaust side of the cylinder is obviously more dangerous than in other areas. When removing or re-profiling a cylinder fin, follow the instructions and the limits in the manufacturer’s manual.


Inspect spark plug inserts for the condition of the threads and for looseness. Run a tap of the proper size through the bushing. Very often, the inside threads of the bushing are burned. If more than one thread is missing, the bushing should be rejected. Tighten a plug in the bushing to check for looseness.